Activation of cAMP-dependent protein kinase suppresses the presynaptic cannabinoid inhibition of glutamatergic transmission at corticostriatal synapses.

نویسندگان

  • Chiung-Chun Huang
  • Yea-Lin Chen
  • Shiow-Win Lo
  • Kuei-Sen Hsu
چکیده

In a previous study, we showed that type 1 cannabinoid (CB(1)) receptor activation substantially depresses the corticostriatal glutamatergic transmission onto striatal neurons in the brain slice preparation. We now report that the adenylyl cyclase activator forskolin and cAMP analog (S)-p-8-(4-chlorophenythil) adenosine-3',5'-monophosphorothioate (Sp-8-CPT-cAMPS) strongly suppressed the synaptic depression induced by cannabimimetic aminoalkylindole, WIN 55,212-2. Application of the cAMP-dependent protein kinase (PKA) inhibitor KT5720 alone had no consistent effect on basal synaptic transmission but the synaptic enhancement elicited by forskolin was blocked. In addition, pretreatment of striatal slices with either KT5720 or another PKA inhibitor, H89, completely abolished the attenuation by forskolin on WIN 55,212-2-induced synaptic depression. The effect of forskolin on CB(1) receptor function was still observed in a low Ca(2+) bathing solution, suggesting that the forskolin's action is not attributable to its ability to saturate the presynaptic transmitter release processes. The possibility that forskolin acted by increasing CB(1) receptor phosphorylation was confirmed by demonstrating that the serine-phosphorylated component with CB(1) receptors was significantly increased after forskolin treatment. This forskolin effect was markedly attenuated in the presence of KT5720. Moreover, the activation of beta-adrenergic receptors by isoproterenol mimics forskolin to elicit a PKA-dependent inhibition of CB(1) receptor function. Together, these observations indicate that the presynaptic inhibitory action of CB(1) receptors at corticostriatal synapses could be negatively regulated by cAMP/PKA-mediated receptor phosphorylation. This effect of PKA may play a functional role in fine-tuning glutamatergic transmission at corticostriatal synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins.

One of the most prominent roles of metabotropic glutamate receptors (mGluRs) in the CNS is to serve as presynaptic receptors that inhibit transmission at glutamatergic synapses. Previous reports suggest that the presynaptic effect of group II mGluRs at corticostriatal synapses can be inhibited by activators of protein kinase C (PKC). We now report that activation of PKC inhibits the ability of ...

متن کامل

The Cdk5 inhibitor Roscovitine increases LTP induction in corticostriatal synapses

In corticostriatal synapses, LTD (long-term depression) and LTP (long-term potentiation) are modulated by the activation of DA (dopamine) receptors, with LTD being the most common type of long-term plasticity induced using the standard stimulation protocols. In particular, activation of the D1 signaling pathway increases cAMP/PKA (protein kinase A) phosphorylation activity and promotes an incre...

متن کامل

Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent...

متن کامل

Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum

The striatum plays critical roles in action control and cognition, and activity of striatal neurons is driven by glutamatergic input. Inhibition of glutamatergic inputs to projection neurons and interneurons of the striatum by presynaptic G protein-coupled receptors (GPCRs) stands to modulate striatal output and striatum-dependent behaviors. Despite knowledge that a substantial number of glutam...

متن کامل

Potentiation of Electrical and Chemical Synaptic Transmission Mediated by Endocannabinoids

Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhanceme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2002